亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕

全國服務(wù)咨詢熱線:

13395745986

當(dāng)前位置:首頁  >  技術(shù)文章  >  應(yīng)用案例 | 基于深度神經(jīng)網(wǎng)絡(luò)的無需壓力校準(zhǔn)和輪廓擬合的氣體傳感光譜技術(shù)

應(yīng)用案例 | 基于深度神經(jīng)網(wǎng)絡(luò)的無需壓力校準(zhǔn)和輪廓擬合的氣體傳感光譜技術(shù)

更新日期:2023-08-30      點擊次數(shù):1976

近日,來自安徽大學(xué)的周勝副教授團隊發(fā)表了《基于深度神經(jīng)網(wǎng)絡(luò)的無需壓力校準(zhǔn)和輪廓擬合的氣體傳感光譜技術(shù)》論文。

Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.

 

甲烷(CH4)是天然氣的主要成分,在工業(yè)生產(chǎn)和日常生活中廣泛用作燃料。此外,甲烷是一種重要的溫室氣體,其濃度對全球氣候產(chǎn)生重要影響。因此,甲烷的測量對環(huán)境監(jiān)測、生物醫(yī)藥和能源研究具有重要意義。氣體濃度通常通過各種微量氣體傳感器進行測量,例如氣相色譜儀、半導(dǎo)體氣體傳感器和電化學(xué)設(shè)備。半導(dǎo)體氣體傳感器在適當(dāng)?shù)牟僮鳝h(huán)境下具有ppm級別的靈敏度。激光吸收光譜技術(shù)具有高選擇性、高靈敏度、快速和多成分監(jiān)測等優(yōu)勢,目前廣泛用于各種氣體的檢測。激光吸收光譜技術(shù)可以準(zhǔn)確測量氣體分子的特征吸收線,并基于可調(diào)諧激光有效降低其他氣體光譜線的干擾。此外,它提供了實時原位氣體檢測的可能性,這對于從工業(yè)過程到環(huán)境變化的各種現(xiàn)象的理解和監(jiān)測至關(guān)重要。氣體分子可以通過其指紋吸收光譜進行有效識別,包括典型的所謂“自展寬"參數(shù)和“空氣展寬"參數(shù)。光譜線參數(shù)是壓力和溫度的函數(shù)。濃度測量的準(zhǔn)確性取決于壓力穩(wěn)定性和光譜擬合精度。對于定量光譜分析,傳統(tǒng)上通過準(zhǔn)確的模型對光譜進行擬合,同時壓力和溫度必須定期校準(zhǔn),尤其是在相對大的環(huán)境波動情況下。因此,為實現(xiàn)所需的準(zhǔn)確性,系統(tǒng)的復(fù)雜性增加了。

Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement of CH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening" parameters and “air-broadening" parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy.

 

目前,人工智能的快速發(fā)展為解決這個問題提供了一種新途徑。人工神經(jīng)網(wǎng)絡(luò)已被用于氣體識別,并在足夠訓(xùn)練數(shù)據(jù)的條件下表現(xiàn)出良好性能。基于Hopfield自聯(lián)想記憶算法的神經(jīng)網(wǎng)絡(luò)已用于識別五種類似的醇的紅外光譜。反向傳播神經(jīng)網(wǎng)絡(luò)用于從混合氣體中識別目標(biāo)氣體,證明了卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型可以有效提高識別準(zhǔn)確性。此外,最近的研究表明深度神經(jīng)網(wǎng)絡(luò)也可以應(yīng)用于振動光譜分析。卷積神經(jīng)網(wǎng)絡(luò)和自編碼器網(wǎng)絡(luò)被用于處理一維振動光譜數(shù)據(jù)。與傳統(tǒng)氣體檢測技術(shù)相比,輔以深度學(xué)習(xí)的氣體傳感器可以實現(xiàn)準(zhǔn)確的靈敏度測量,并降低異常檢測的魯棒性。深度神經(jīng)網(wǎng)絡(luò)(DNN)可以在經(jīng)過足夠樣本訓(xùn)練后直接從吸收光譜中學(xué)習(xí)特征,實現(xiàn)不需要壓力校準(zhǔn)和輪廓擬合的氣體濃度直接識別。這種網(wǎng)絡(luò)為檢索氣體濃度提供了一種新途徑,無需昂貴且復(fù)雜的壓力控制器。為了展示提出的DNN輔助算法的性能,構(gòu)建了一個基于DFB激光二極管的甲烷檢測氣體傳感器系統(tǒng)。預(yù)測的濃度與校準(zhǔn)值相當(dāng)吻合。這項研究表明,基于DNN的激光吸收光譜在大氣環(huán)境監(jiān)測、呼氣檢測等方面具有顯著潛力。

Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection.

A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achieves the direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption  spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..

 

 

實驗裝置

用于獲取甲烷(CH4)氣體吸收光譜的實驗裝置如圖1所示。一臺近紅外DFB激光二極管,最大峰值輸出功率為20毫瓦,被用作光源。通過控制激光溫度和電流,激光可以在6045 cm-1到6047 cm-1范圍內(nèi)進行調(diào)諧寧波海爾欣光電科技有限公司為此項目提供激光驅(qū)動器,型號為QC-1000所選CH4在6046.95 cm-1附近的吸收線在圖2中基于從HITRAN數(shù)據(jù)庫獲取的光譜線參數(shù)進行了模擬。DFB激光二極管經(jīng)過纖維準(zhǔn)直器進行準(zhǔn)直,然后由一塊CaF2分束器進行對準(zhǔn),分束后的可見紅光(632.8納米)光束用作跟蹤激光。隨后,光束被送入一個7米有效光程的多程傳輸池,并且池內(nèi)的壓力由壓力控制器、流量控制器和隔膜泵協(xié)同控制。一個典型頻率為100赫茲的三角波被用作掃描信號,以驅(qū)動激光二極管。最后,激光通過一個InGaAs光電探測器進行檢測,并被數(shù)據(jù)采集單元卡獲取。信號隨后傳輸?shù)接嬎銠C,并由自制的LabVIEW程序進行分析。

Experimental setup

The experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm?1 to 6047 cm?1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm?1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimated by a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program.

 

QC-1000(1) 

 QC-1000, Healthy photon Co., Ltd.

 

 

Fig. 2. Experimental device diagram. 

Fig. 1. Experimental device diagram.

 

Fig. 3. 

Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm?1 and the cross-section of the selected line obtained from the HITRAN database.

 

 

 

結(jié)論

總體而言,本項目開發(fā)了基于DNN算法和激光吸收光譜的概念驗證氣體傳感器,并設(shè)計了基于DFB激光二極管的甲烷檢測傳感器系統(tǒng)。此外,通過計算RMSE和訓(xùn)練時間評估了DNN算法的性能,并優(yōu)化了DNN層、神經(jīng)元數(shù)量和epochs等參數(shù),以獲取最佳參數(shù)。提出了改進的系統(tǒng)來分析和預(yù)測氣體吸收光譜數(shù)據(jù),在甲烷濃度預(yù)測方面表現(xiàn)出良好的準(zhǔn)確性和穩(wěn)定性。不同濃度的甲烷預(yù)測值與相應(yīng)的理論值線性擬合,證明其在實際領(lǐng)域應(yīng)用中具有巨大潛力,尤其適用于惡劣環(huán)境。

 

Conclusions

Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.

 

 

References

Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 11207


全國統(tǒng)一服務(wù)電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號樓305室

微信公眾號

亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕
欧美日韩1区2区| 99热免费精品| 久久亚洲私人国产精品va| 国产亚洲欧美色| 久久精品一区二区| 亚洲电影免费观看高清| 国产精品热久久久久夜色精品三区 | 蜜桃av噜噜一区二区三区| 亚洲国产另类久久精品| 国产欧美日韩| 麻豆精品传媒视频| 99国产精品一区| 亚洲大片在线观看| 欧美日韩免费精品| 蘑菇福利视频一区播放| aa成人免费视频| 国产人久久人人人人爽| 欧美视频一区二区| 久久精品视频亚洲| 亚洲精品女人| 亚洲黄页一区| 国产精品社区| 国产精品成人一区二区网站软件 | 亚洲国产精品热久久| 国产乱码精品1区2区3区| 久久久一本精品99久久精品66| 亚洲国语精品自产拍在线观看| 国内精品久久久| 欧美日韩成人在线| 欧美电影免费观看| 午夜精品国产更新| 亚洲精品1区2区| 亚洲国产福利在线| 国产精品亚洲综合色区韩国| 欧美性猛片xxxx免费看久爱| 久久久久久网站| 亚洲美女中出| 日韩视频一区二区三区| 国产欧美一区二区精品秋霞影院 | 欧美一区二区三区免费观看| 亚洲电影中文字幕| 亚洲国产99| 国产精品美女一区二区| 欧美午夜一区| 久久亚洲一区二区三区四区| 久久这里有精品15一区二区三区| 一区二区三区日韩精品视频| 精品成人国产在线观看男人呻吟| 国内外成人在线| 欧美视频网站| 欧美午夜免费| 欧美国产日本| 欧美日韩精品免费| 久久这里有精品15一区二区三区| 久久综合中文| 欧美一区二区女人| 一本一本a久久| 亚洲一级高清| 洋洋av久久久久久久一区| 夜夜嗨av一区二区三区四季av| 影音先锋日韩有码| 亚洲国产一区二区在线| 国产一区二区激情| 尤物精品国产第一福利三区| 国产欧美日韩激情| 精品9999| 国产综合色产| 最新国产成人在线观看| 激情一区二区| 亚洲精品一级| 亚洲国产高清一区二区三区| 亚洲乱码精品一二三四区日韩在线 | 国产精品久久久久影院亚瑟| 国产欧美精品日韩区二区麻豆天美| 欧美三级精品| 国产一区二区精品丝袜| 国产精品中文在线| 黄色精品网站| 国内成人自拍视频| 最新日韩在线| 最新国产成人在线观看| 国产精品99久久久久久白浆小说| 亚洲精选中文字幕| 亚洲欧美在线免费| 噜噜噜噜噜久久久久久91| 久久精品视频在线| 欧美精品一区二区三区久久久竹菊 | 国产精品99免费看| 黄色成人在线| 韩国av一区| 亚洲精品久久久久| 亚洲人成网站精品片在线观看| 在线视频中文亚洲| 一区二区国产在线观看| 欧美在线在线| 欧美日韩三级视频| 欧美视频第二页| 精品69视频一区二区三区| 黑人巨大精品欧美一区二区小视频 | 欧美在线视频免费播放| 欧美高清影院| 欧美国产先锋| 国产日韩在线播放| 国产亚洲欧美日韩日本| 亚洲日本va午夜在线影院| 亚洲精品一区中文| 久久久久国产精品一区| 欧美四级剧情无删版影片| 国产精品v亚洲精品v日韩精品| 精品动漫3d一区二区三区免费 | 国产一区二区三区免费不卡| 国产亚洲一级高清| 在线视频精品一区| 免费日韩av| 欧美日韩日日骚| 亚洲第一毛片| 99精品福利视频| 久久性天堂网| 国产欧美精品国产国产专区| 好吊色欧美一区二区三区视频| 一区二区三区www| 老司机精品导航| 欧美精品1区2区3区| 一区二区三区在线视频免费观看 | 看片网站欧美日韩| 国产麻豆日韩| 亚洲成人自拍视频| 久久国产精品亚洲77777| 欧美色精品天天在线观看视频 | 欧美精品一区二区三区在线看午夜| 欧美色精品在线视频| 91久久线看在观草草青青| 一区二区三区日韩精品| 卡通动漫国产精品| 国产亚洲综合在线| 亚洲激情综合| 榴莲视频成人在线观看| 国产一区99| 亚洲日韩视频| 久久综合精品一区| 国产一区二区精品久久| 亚洲精品综合久久中文字幕| 女同性一区二区三区人了人一| 国模大胆一区二区三区| 亚洲日本中文字幕| 欧美成人午夜免费视在线看片| 红桃视频国产精品| 一区二区三区欧美激情| 欧美日韩精品免费| 亚洲精品黄色| 欧美韩日一区| 国产日韩一区二区三区| 亚洲欧美日韩成人| 国产精品mv在线观看| 影音先锋日韩精品| 久久午夜电影| 在线观看亚洲| 老司机免费视频一区二区三区 | 一区二区电影免费在线观看| 欧美国内亚洲| 国外成人性视频| 久久国产精品99久久久久久老狼 | 久久人91精品久久久久久不卡| 欧美久久视频| 日韩一级欧洲| 欧美日韩一区自拍| 在线播放视频一区| 蜜臀久久99精品久久久久久9| 在线欧美福利| 欧美丰满高潮xxxx喷水动漫| 国产精品丝袜91| 欧美在线视频免费观看| 极品尤物av久久免费看| 老司机亚洲精品| 国产麻豆午夜三级精品| 欧美在线一级视频| 精品999成人| 欧美成人午夜激情在线| 国产一区在线播放| 久久人人97超碰精品888| 亚洲福利视频专区| 欧美精品色网| 亚洲国产欧美精品| 欧美精品国产一区| 亚洲视频999| 国产欧美日韩视频在线观看| 久久久999精品视频| 国产毛片精品国产一区二区三区| 久久国产精品久久久久久久久久| 黄色一区三区| 欧美国内亚洲| 亚洲高清在线播放| 欧美人在线视频| 午夜激情综合网| 在线成人激情| 欧美日韩国产综合一区二区| 亚洲国产精品久久久久| 欧美日韩午夜激情| 欧美一区国产一区| 亚洲国产精品免费|