亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕

全國服務咨詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 吸收光譜優(yōu)化基于深度學習網絡的自適應Savitzky Golay濾波算法

應用案例 | 吸收光譜優(yōu)化基于深度學習網絡的自適應Savitzky Golay濾波算法

更新日期:2023-12-25      點擊次數(shù):1718

Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.

近日,來自安徽大學、山東師范大學聯(lián)合研究團隊發(fā)表了一篇題為Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究論文。

 

 

研究背景 Research Background

Nitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.

氮氧化物(NO2)是大氣中的主要污染物,源自自然光照、排放和工業(yè)排放。長時間暴露于NO2與呼吸問題的風險增加有關。NO2在大氣中產生的二次污染物可能導致光化學煙霧和酸雨。激光光譜學,如吸收光譜、熒光光譜和拉曼光譜,在物理學、化學、生物學和材料科學中發(fā)揮著日益重要的作用。它為追蹤具有靈敏度、選擇性和快速響應的氣體分析提供了強大的平臺。激光吸收光譜已被用于NO2的定量分析。然而,測得的氣體吸收光譜數(shù)據通常受到各種噪聲的污染,如隨機和相干噪聲,這可能扭曲有效吸收光譜并影響檢測靈敏度。

 

The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.

最近,Savitzky-GolayS-G)濾波算法因其參數(shù)較少、操作速度較快且保留了光譜的高度和形狀而受到關注。此外,可以在一個簡單的步驟中計算導數(shù)和平滑的光譜。RivoloNagel開發(fā)了一種自適應S-G平滑算法,逐點選擇最佳濾波參數(shù)。通過簡單的多變量閾值方法,S-G濾波器可以去除連續(xù)葡萄糖監(jiān)測(CGM)信號中的所有類型噪聲,并進一步用于檢測低血糖/高血糖事件。S-G平滑濾波器廣泛用于平滑傅立葉變換紅外光譜的光譜,可消除隨機地震噪聲、遙感圖像融合和脈動波的處理。

 

The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance.

S–G 平滑濾波器的性能取決于多項式階數(shù)和窗口大小的適當折中。然而,在實際應用中,噪聲源和吸收光譜是未知的。在固定的窗口大小和多項式階數(shù)下獲得最佳的濾波效果是困難的。為解決這個問題,我們提出了一種優(yōu)化的自適應S-G算法,將深度學習(DL)網絡與傳統(tǒng)的S-G濾波結合起來,以提高測量系統(tǒng)的性能。

 

實驗設置Experimental setup

Fig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube™, HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.

1展示了實驗設置,包括光源、帶有氣體壓力控制器的多通道吸收池、一系列鏡子、探測器和計算機。

Fig. 1(1).png

 

Fig. 1. Experimental device diagram.

 

 

寧波海爾欣光電科技有限公司為此項目提供了量子級聯(lián)激光器(型號:QC-Qube™ 全功能迷你量子級聯(lián)激光發(fā)射頭)。激光器由溫度控制器控制,最大峰值輸出功率為30 mW,由電流控制器控制,工作在~6.2 mm,通過鈣氟化物(CaF2)鏡子的輻射與追蹤激光(可見紅光,波長632.8 nm)共線,使用氧化鋅硒(ZnSe)分束器。光束進入具有2 m有效光程的多通道池,通過流量控制器和氣體池入口和出口的隔膜泵控制池中的壓力。典型頻率為100 Hz的三角波用作掃描信號。在296 K的溫度下,波數(shù)從1630.1調至1630.42 cm-1。使用熱電冷卻的汞鎘鎵探測器進行信號檢測,該探測器使用75 mm焦距的平凸透鏡。DAQ卡探測器放置在探測器旁邊,將數(shù)據傳輸?shù)接嬎銠C,數(shù)據由LabVIEW程序進行實時分析。

QC-Qube™.jpg

 

QC-Qube™, HealthyPhoton Co., Ltd.

 

Fig.2(1).png

 

Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.

Fig.3(1).png

 

Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.

 

結論Conclusion

An improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.

在這項研究中,我們開發(fā)了一種改進的Savitzky-GolayS-G)濾波算法,用于去噪氮氧化物(NO2)的吸收光譜。我們引入了深度學習(DL)網絡到傳統(tǒng)的S-G濾波算法中,以實時調整窗口大小和多項式階數(shù)。DL網絡的自適應和跟蹤反饋能夠有效解決數(shù)字信號處理中選擇輸入濾波器參數(shù)的盲目性。我們將優(yōu)化后的自適應S-G濾波算法與多信號平均濾波(MAF)算法進行比較,以展示其性能。優(yōu)化后的S-G濾波算法被用于檢測氮氧化物在基于中量子級聯(lián)激光器(QCL)的氣體傳感器系統(tǒng)中的應用。實驗結果表明,該算法獲得了5倍的靈敏度增強,表明新開發(fā)的算法可以生成高質量的氣體吸收光譜,適用于大氣環(huán)境監(jiān)測和呼吸氣檢測等應用。

 

 

reference參考來源:

Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187


全國統(tǒng)一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區(qū)潘火街道金源路中創(chuàng)科技園1號樓305室

微信公眾號

亚洲韩国在线,中文av字幕一区,久久亚洲成人,日韩在线观看中文字幕
欧美日韩精品在线| 午夜精品在线视频| 久久九九99| 韩国成人精品a∨在线观看| 欧美成人午夜激情视频| 亚洲精品欧美在线| 欧美三级电影一区| 久久综合网络一区二区| 亚洲人成网站999久久久综合| 欧美精品一区二区三| 乱码第一页成人| 日韩午夜精品| 国产精品自拍三区| 欧美三级视频在线观看| 性色av一区二区三区红粉影视| 国模 一区 二区 三区| 国产精品入口日韩视频大尺度| 欧美伊人久久久久久午夜久久久久| 国内精品伊人久久久久av一坑| 国产精品大片wwwwww| 久久精品人人做人人爽| 亚洲经典三级| 亚洲电影毛片| 国产精品久久久久久久久免费桃花| 欧美日本久久| 欧美一区二区三区视频| 亚洲欧洲综合另类| 亚洲国产成人午夜在线一区| 欧美日韩一区二区在线播放| 欧美另类69精品久久久久9999| 午夜精品久久久久久久蜜桃app| 亚洲福利视频三区| 狠狠干综合网| 欧美三区在线| 欧美亚洲成人精品| 麻豆精品网站| 美女精品一区| 亚洲免费一级电影| 亚洲国产欧美一区| 亚洲欧洲在线免费| 国产美女精品视频免费观看| 国产精品视频999| 欧美jizzhd精品欧美喷水| 女生裸体视频一区二区三区| 午夜精品久久久久久99热| 亚洲国产欧美一区| 亚洲精品一区二| 韩国av一区二区三区在线观看| 国产综合久久久久影院| 欧美亚日韩国产aⅴ精品中极品| 欧美日韩午夜剧场| 猫咪成人在线观看| 欧美大片91| 久久视频在线视频| 美女性感视频久久久| 久久av资源网| 久久在线免费视频| 午夜在线一区| 在线视频精品一区| 亚洲一区免费视频| 夜夜嗨av一区二区三区四季av| 一本色道久久综合狠狠躁篇的优点 | 国产精品久久久久av免费| 国产精品国产三级国产aⅴ浪潮| 免费观看成人网| 欧美另类一区二区三区| 美国成人直播| 欧美精品色网| 美女在线一区二区| 欧美日韩精品伦理作品在线免费观看| 久热爱精品视频线路一| 欧美精品1区| 欧美成人免费在线| 欧美午夜电影网| 欧美日韩a区| 国产美女精品视频| 国产精品美女久久| 国产一区欧美| 国产欧美视频一区二区三区| 在线观看欧美日韩| 黄色一区二区三区| 日韩视频专区| 亚洲精品日韩在线| 欧美一级夜夜爽| 欧美gay视频| 免费日韩av片| 国产精品久久久久久模特| 欧美日韩一区二区三区四区五区| 国产欧美一区二区三区久久 | 伊大人香蕉综合8在线视| 国产精品自拍一区| 亚洲黄色影片| 亚洲人成网站999久久久综合| 在线综合+亚洲+欧美中文字幕| 99爱精品视频| 亚洲欧美www| 欧美成人精品三级在线观看| 女同性一区二区三区人了人一 | 激情综合网激情| 日韩午夜在线视频| 一级成人国产| 久久综合九色| 国产精品欧美日韩一区二区| 国产精品亚洲欧美| 亚洲九九精品| 久久免费高清| 欧美成人精品1314www| 国产精品尤物| 国产一级揄自揄精品视频| 亚洲精品日韩综合观看成人91 | 在线观看亚洲精品| 亚洲高清视频一区| 欧美在线三级| 国产精品二区三区四区| 国产精品日韩一区| 亚洲国产精品一区二区久 | 亚洲第一网站| 亚洲另类在线一区| 久久精品人人做人人爽电影蜜月| 欧美日韩爆操| 国产精品综合av一区二区国产馆| 亚洲国产小视频在线观看| 一二三区精品| 欧美激情亚洲另类| 1000部精品久久久久久久久| 亚洲精品小视频在线观看| 久久久久久久综合日本| 国产精品一区二区在线观看不卡| 国精品一区二区三区| 午夜精品久久久久久99热软件| 欧美日韩综合在线| 国产日韩欧美自拍| 亚洲淫性视频| 欧美日韩一区二区在线观看视频 | 亚洲国产第一| 一区二区三区视频在线| 免费91麻豆精品国产自产在线观看| 国产久一道中文一区| 亚洲国产欧美日韩| 久久婷婷麻豆| 国模精品娜娜一二三区| 91久久久国产精品| 久久综合九色综合久99| 国产资源精品在线观看| 亚洲人在线视频| 免费永久网站黄欧美| 在线观看视频日韩| 久久婷婷国产综合精品青草| 欧美日韩久久精品| 亚洲精品中文字幕有码专区| 农夫在线精品视频免费观看| 国产精品捆绑调教| 亚洲影院色无极综合| 国产精品白丝黑袜喷水久久久| 一区二区在线视频| 老色鬼久久亚洲一区二区| 黑人巨大精品欧美黑白配亚洲| 日韩香蕉视频| 欧美日韩国产综合久久| 亚洲精品国产精品乱码不99按摩 | 国产一区久久久| 在线亚洲免费| 欧美体内谢she精2性欧美| 日韩一区二区久久| 欧美日韩黄色大片| 在线观看91精品国产入口| 麻豆精品在线播放| 亚洲精品美女91| 欧美喷潮久久久xxxxx| 黄色成人片子| 免费日韩av片| 亚洲精品免费看| 欧美日韩国产区一| 精品二区久久| 欧美高清视频在线观看| 亚洲精一区二区三区| 欧美三级午夜理伦三级中文幕 | 久久一区二区三区超碰国产精品| 精品91在线| 欧美本精品男人aⅴ天堂| 国产亚洲欧美aaaa| 久久青草欧美一区二区三区| 亚洲电影免费观看高清完整版在线 | 亚洲午夜在线视频| 国产精品入口夜色视频大尺度| 亚洲精品美女在线观看| 欧美日韩在线播放| 亚洲女ⅴideoshd黑人| 国产日本亚洲高清| 久久夜色精品| 国产主播一区二区三区四区| 久久婷婷一区| 99精品视频免费观看| 国产欧美日韩激情| 免费不卡在线观看av| 激情校园亚洲| 欧美日韩亚洲91| 欧美一区亚洲一区| 亚洲欧洲午夜| 国产精品美女久久久浪潮软件|